A Nonparametric Approach to Pricing Options Learning Networks

TitleA Nonparametric Approach to Pricing Options Learning Networks
Publication TypeJournal Article
Year of Publication2014
Date PublishedMarch 2014
JournalSoutheast Europe Journal of Soft Computıng
Volume3
Issue1
Section45
Pagination13
Publication Languageeng
AuthorsCan, M, Fadda, S
Abstract

For practitioners of equity markets, option pricing is a major challenge during high volatility periods and Black-Scholes formula for option pricing is not the proper tool for very deep out-of-the-money options. The Black-Scholes pricing errors are larger in the deeper out-of-the money options relative to the near the-money options, and it's mispricing worsens with increased volatility. Experts opinion is that the Black-Scholes model is not the proper pricing tool in high volatility situations especially for very deep out-of-the-money options. They also argue that prior to the 1987 crash, volatilities were symmetric around zero moneyness, with in-the-money and out-of-the money having higher implied volatilities than at-the-money options. However, after the crash, the call option implied volatilities were decreasing monotonically as the call went deeper into out-of-the-money, while the put option implied volatilities were decreasing monotonically as the put went deeper into in-the-money. Since these findings cannot be explained by the Black-Scholes model and its variations, researchers searched for improved option pricing models. Feedforward networks provide more accurate pricing estimates for the deeper out-of-the money options and handles pricing during high volatility with considerably lower errors for out-of-the-money call and put options. This could be invaluable information for practitioners as option pricing is a major challenge during high volatility periods. In this article a nonparametric method for estimating S&P 100 index option prices using artificial neural networks is presented. To show the value of artificial neural network pricing formulas, Black-Scholes option prices are compared with the network prices against market prices. To illustrate the practical relevance of the network pricing approach, it is applied to the pricing of S&P 100 index options from April 4, 2014 to April 9, 2014. On the five days data while Black-Scholes formula prices have a mean $10.17 error for puts, and $1.98 for calls, while neural network’s error is less than $5 for puts, and $1 for calls.